# To students entering grade 11 SL Applications & Interpretation

In order to keep your current math skills sharp, please complete the summer review packet. Please complete before the first day of school.

Show all work and solutions on a separate sheet of paper. Show all work and graphs clearly!

Have a great summer! CDS Mathematics Department

## **Linear Equations**

- 1. Write an algebraic expression to represent each verbal expression
  - a. Twice the difference of a number and 11
  - b. The product of the square of a number and 5
- 2. Solve each equation
  - a. 8.5(3y + 4) = 3.5(y 28)
  - b. 12g 9g + 24 g 9 = 13
  - c.  $\frac{1}{2}p 12 = \frac{3}{4}p 18$
  - d. 5(4x 9) 2x = 6x + 15
- 3. If 3m + 5 = 23, what is the value of 2m 3?
- 4. Solve each inequality and graph the solution set on a number line.
  - a.  $-2b > \frac{18-b}{5}$
  - b.  $-3b 5 \ge -6b 13$
- 5. Carson has \$35 to spend at the water park. The admission price is \$25 and each soda is \$2.50. Write an inequality to show how many sodas he can buy.
- 6. Find the slope of the line that passes through the points (-2, 7) and (3, -1).
- 7. Write an equation in slope-intercept form for the line that has slope -2 and passes through the point (3, -4).
- 8. Write an equation through the points (2, -4) and (1, 6).
- 9. Write an equation in slope-intercept form for the line that passes through (-3, 5) and is parallel to y = -6x + 1.
- 10. Graph each inequality
  - a.  $y \ge 4x 1$
  - b. 2x + 6y < -12
- 11. Solve each system of equations by using either substitution or elimination

  - a.  $\begin{cases} y = x + 4 \\ x + y = -12 \end{cases}$ <br/>b.  $\begin{cases} 3x + 5y = -7 \\ 6x 4y = 0 \end{cases}$
- 12. Solve each system of inequalities by graphing
- 13. Sierra King is a nail technician. She allots 20 minutes for a manicure and 45 minutes for a pedicure in her 7-hour work day. No more than 5 pedicures can be scheduled for each day. The prices are \$25 for a manicure and \$45 for a pedicure. If she must schedule both procedures, how many of each should Ms. King schedule to maximize her daily income? What is her maximum daily income?

#### **Relations and Functions**

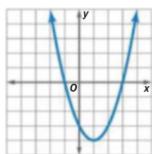
14. State the domain and range for each relation. Determine whether the relation is a function.

a. 
$$\{(-3,0), (0,2), (2,4), (4,5), (5,2)\}$$

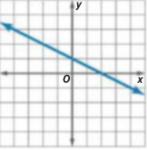
b. 
$$\{(-4,1), (3,3), (1,1), (-2,5), (3,-4)\}$$

15. State whether each function is a linear function.

a. 
$$3x + 4y = 12$$

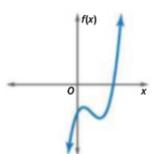

b. 
$$y = x^3 - 6$$

c. 
$$\frac{1}{x} + 3y = -5$$

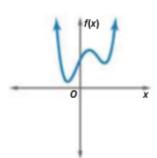

d. 
$$f(x) = -2x + 9$$

16. Identify the type of symmetry in the graph of each function.

a




b




17. For each graph, describe the end behavior and state the number of real zeros

a.



b.



18. Use a graphing calculator to estimate the x-coordinates at which the maxima and minima of each function occur. Round to the nearest hundredth.

a. 
$$f(x) = 2x^3 - 3x^2 - 4x + 5$$

b. 
$$f(x) = x^4 + 3x^3 - x^2 + 8x + 1$$

19. For each function below, state the parent function and describe the transformations.

a. 
$$f(x) = 3\sqrt{x-5} + 7$$

b. 
$$f(x) = -(x+2)^2 - 1$$

c. 
$$\frac{1}{5}(x-3)^3-4$$

20. Find the x- and y- intercepts of the following by hand.

a. 
$$y = 3x - 4$$

b. 
$$y = \frac{2}{5}x + \frac{4}{5}$$

## Quadratics

21. Solve each quadratic equation by graphing. If exact roots cannot be found, state the consecutive integers between which the roots are located.

a. 
$$x^2 - x - 20 = 0$$

b. 
$$4x^2 - 6x - 15 = 0$$

22. Simplify:

a. 
$$\sqrt{-8}$$

b. 
$$(2-i) + (13+4i)$$

c. 
$$(6+2i)-(4-3i)$$

d. 
$$(6+5i)(3-2i)$$

23. Solve each equation. Write your answer in simplest radical form.

a. 
$$2x^2 + 50 = 0$$

b. 
$$3x^2 + 15 = 0$$

c. 
$$4x^2 + 1 = 0$$

24. Solve each equation by factoring

a. 
$$x^2 - x - 12 = 0$$

b. 
$$x^2 + 3x - 40 = 0$$

25. Solve each equation by using the quadratic formula. Round to the nearest hundredth.

a. 
$$2x^2 + 19x - 33 = 0$$

b. 
$$4x^2 - 4x + 1 = 0$$

c. 
$$2x^2 - 3x = 5x + 7$$

d. 
$$5x^2 + 9x = 10$$

## **Functions**

26. Given f(x) = 2x + 9 and  $g(x) = x^2 + 2x + 1$ , find each function.

a. 
$$(f + g)(x)$$

b. 
$$(f - g)(x)$$

c. 
$$(f \cdot g)(x)$$

d. 
$$\left(\frac{f}{a}\right)(x)$$

27. Find  $(f \circ g)(x)$  and  $(g \circ f)(x)$  for each of the following:

$$f(x) = 2x + 1$$
a.  $g(x) = 4x + 5$ 

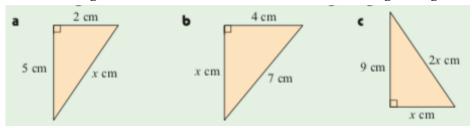
$$a. \quad g(x) = 4x - 5$$

b. 
$$f(x) = x^2 + 1$$
  
  $g(x) = x - 7$ 

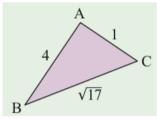
$$g(x) = x - 7$$

- 28. Find the inverse of each function
  - a. f(x) = 5x 6
  - b.  $f(x) = \frac{4x+1}{5}$
- 29. Sketch  $f(x) = \sqrt{x+5} 3$ . State the domain and range.
- 30. Solve each equation. (Don't forget to plug back into the original to make sure it works.)
  - a.  $\sqrt{x-3} + 5 = 15$
  - b.  $\sqrt{m+3} = \sqrt{2m+1}$
  - c.  $(x+1)^{1/4} = -3$
  - d.  $a^{1/3} 4 = 0$
- 31. Solve each equation
  - a.  $16^x = \frac{1}{64}$
  - b.  $3^{4x} = 9^{3x+7}$
  - c.  $5^{1-x} = 125^x$

#### **Sets and Venn Diagrams**


32. Define each of the following and label them with the appropriate symbol

 $(\mathbb{N}, \mathbb{P}, \mathbb{Q}, \mathbb{R}, \mathbb{Z})$ 


- a. Natural Numbers
- b. Integers
- c. Rational Numbers
- d. Irrational Numbers
- e. Real Numbers
- 33. Suppose  $U = \{x | x \le 12, x \in \mathbb{Z}^+\}$  and  $A = \{multiples \ of \ 3 \le 12\}.$ 
  - a. Show A on a Venn diagram
  - b. List the set *A*′
  - c. Find n(A')
- 34. Consider  $U = \{1,2,3,4,5,6,7,8,9,10\}, P = \{2,3,5,7\}, and Q = \{2,4,6,8\}$ 
  - a. Show these sets on a Venn diagram
  - b. List the elements of:
    - i.  $P \cap Q$
    - ii.  $P \cup Q$
    - iii. Q'
  - c. Find
    - i. n(P')
    - ii.  $n(P \cup Q)$
    - iii.  $n(P \cap Q)$

#### Pythagoras' Theorem

35. Find the lengths of the unknown sides in the following triangles:



36. Is the following triangle right angled? Give evidence



- 37. Show that  $\{5, 11, 13\}$  is not a Pythagorean triple
- 38. A rectangle has diagonal 15cm and one side 8 cm. Find the perimeter of the rectangle.
- 39. A circle has a chord of length 10 cm. The shortest distance from the circle's center to the chord is 5 cm. Find the radius of the circle.
- 40. A boat leaves X and travels due east for 10 km. It then sails 10 km south to Y. Find the distance and angle from X to Y.
- 41. What is the length of the longest toothpick which can be placed inside a rectangular box that is 3 cm x 5 cm x 8 cm?

### **Coordinate Geometry**

- 42. Find the equation of the vertical line through (-1, 5)
- 43. Find the distance between the points S(7, -2) and T(-1, 1)
- 44. Given P(-3, 2) and Q(3, -1), find the midpoint of PQ.
- 45. Find the gradient (slope) of all lines perpendicular to a line with gradient  $-\frac{1}{2}$ .
- 46. Find the y-intercept for the line 4x 3y = -9.
- 47. Determine the gradient of the line with equation 4x + 5y = 11.
- 48. If X(-2, 3) and Y(a, -1) are 6 units apart, find the value of a.
- 49. Given A(-3, 1), B(1, 4) and C(4, 0)
  - a. Show that triangle ABC is isosceles
  - b. Find the midpoint X of AC
  - c. Use gradients to verify that BX is perpendicular to AC

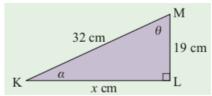
#### **Univariate Data Analysis**

- 50. State whether a census or a sample would be used to find the preferred time of day for shopping at a supermarket.
- 51. The data below are the scores (out of 100) for a Math examination for 45 students

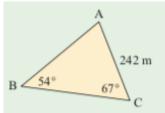
| 58 | 31 | 80 | 69 | 70 | 71 | 82 | 91 | 94 | 60 | 68 | 58 | 90 | 83 | 72 |
|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| 75 | 65 | 76 | 69 | 66 | 64 | 57 | 58 | 77 | 92 | 94 | 49 | 61 | 66 | 91 |
| 64 | 53 | 89 | 91 | 78 | 61 | 74 | 82 | 97 | 70 | 82 | 66 | 55 | 45 | 63 |

- a. Construct a stem and leaf plot using the numbers 3 to 9 as the stems.
- b. What is the highest and lowest mark scored for the examination?
- c. If an 'A' was awarded to students who scored 85 or more for the examination, what percentage of students scored an 'A'?
- d. Would you describe this distribution as symmetric, skewed, or neither?
- 52. A sample of 15 measurements has a mean of 14.2 and a sample of 10 measurements has a mean of 12.6. Find the mean of the total sample of 25 measurements.
- 53. Determine the mean of the numbers 7, 4, 7, 2, 8, and 7. IF two additional numbers, 2 and x, reduce the mean by 1, find x.
- 54. The given table shows the distribution of scores for a year 10 spelling test in Australia.

| Score | Frequency |
|-------|-----------|
| 6     | 2         |
| 7     | 4         |
| 8     | 7         |
| 9     | 12        |
| 10    | 5         |
| Total | 30        |


- a. Calculate the
  - i. Mean
  - ii. Median
  - iii. Mode
  - iv. Range
- b. The average sores for all year 10 students across Australia in this spelling test was 6.2. How does this class compare to the national average?

## **Trigonometry**


- 55. Use your calculator to find, correct to 4 decimal places:
  - a. cos(74°)
  - b. sin (132°)
  - c. tan(97°)
- 56. Find the value of x in the following



57. Find the measure of all unknown sides and angles in triangle KLM



- 58. The angle of elevation from a point 2 km from the base of the vertical cliff to the top of the cliff is 17.7°. Find the height of the cliff, in meters.
- 59. Jason's sketch of his father's triangular vegetable path is shown alongside. Find:



- a. The length of the fence AB
- b. The area of the patch

#### **Probability**

- 60. Illustrate on a 2-dimensional grid the possible outcomes when a coin and a pentagonal spinner with sides labelled A, B, C, D, and E are spun simultaneously.
- 61. What is meant by the saying that two events are independent?
- 62. Use a tree diagram to illustrate the sample space for the possible four child families. Hence, determine the probability that a randomly chosen four-child family:
  - a. is all boys
  - b. has exactly two boys
  - c. has more girls than boys
- 63. Two fair six-sided dice are rolled simultaneously. Determine the probability that the result is a double (both die show the same number).
- 64. A bag contains 4 green and 3 red marbles. Two marbles are randomly selected from the bag, the first being replaced before the second is drawn. Determine the probability that:
  - a. both are green
  - b. they are different in color
- 65. At a local school, 65% of the students play volleyball, 60% play tennis, and 20% play neither sport. Display this information on a Venn diagram, and hence determine the likelihood that a randomly chosen student plays:
  - a. volleyball
  - b. volleyball but not tennis
  - c. at least one of these two sports
  - d. exactly one of these two sports