Analysis 12 HL Summer Review 2020 [110 marks]

The following diagram shows triangle ABC , with $A B=6$ and $A C=8$. diagram not to scale

1a. Given that $\cos \hat{A}=\frac{5}{6}$ find the value of $\sin \hat{A}$.
\qquad
\square

2a. Show that $\log _{9}(\cos 2 x+2)=\log _{3} \sqrt{\cos 2 x+2}$.

2b. Hence or otherwise solve $\log _{3}(2 \sin x)=\log _{9}(\cos 2 x+2)$ for $0<x<\frac{\pi}{2}$.

A large company surveyed 160 of its employees to find out how much time they spend traveling to work on a given day. The results of the survey are shown in the following cumulative frequency diagram.

3a. Find the median number of minutes spent traveling to work.
[2 marks]
\qquad

3b. Find the number of employees whose travelling time is within 15 minutes of the median.
\qquad

Only 10% of the employees spent more than k minutes traveling to work.
3c. Find the value of k.
[3 marks]

The results of the survey can also be displayed on the following box-and-whisker diagram.

3d. Write down the value of b.
\qquad

3e. Find the value of a.
\qquad

3f. Hence, find the interquartile range.
[2 marks]
\qquad

3 g . Travelling times of less than p minutes are considered outliers.
Find the value of p.
\qquad

In an arithmetic sequence, $u_{2}=5$ and $u_{3}=11$.

4a. Find the common difference.
[2 marks]

4b. Find the first term.
\qquad

4c. Find the sum of the first 20 terms.
\qquad

Let $g(x)=x^{2}+b x+11$. The point $(-1,8)$ lies on the graph of g.

5a. Find the value of b.
\qquad

5b. The graph of $f(x)=x^{2}$ is transformed to obtain the graph of g.
Describe this transformation.
\qquad

Consider $\binom{11}{a}=\frac{11!}{a!9!}$.

6a. Find the value of a.
\qquad

6b. Hence or otherwise find the coefficient of the term in x^{9} in the expansion [4 marks] of $(x+3)^{11}$.
\qquad

The points A and B have position vectors $\left(\begin{array}{c}-2 \\ 4 \\ -4\end{array}\right)$ and $\left(\begin{array}{l}6 \\ 8 \\ 0\end{array}\right)$ respectively.
Point C has position vector $\left(\begin{array}{c}-1 \\ k \\ 0\end{array}\right)$. Let O be the origin.

Find, in terms of k,
7a. $\overrightarrow{\mathrm{OA}} \bullet \overrightarrow{\mathrm{OC}}$.
[2 marks]
\qquad

7b. $\overrightarrow{\mathrm{OB}} \bullet \overrightarrow{\mathrm{OC}}$.
[1 mark]
\qquad
\qquad

7d. Calculate the area of triangle AOC.
\qquad

A line, L_{1}, has equation $r=\left(\begin{array}{c}-3 \\ 9 \\ 10\end{array}\right)+s\left(\begin{array}{l}6 \\ 0 \\ 2\end{array}\right)$. Point $\mathrm{P}(15,9, c)$ lies on L_{1}.

8a. Find c.
[4 marks]

8b. A second line, L_{2}, is parallel to L_{1} and passes through $(1,2,3)$. Write down a vector equation for L_{2}.
\qquad

The lengths of two of the sides in a triangle are 4 cm and 5 cm . Let θ be the angle between the two given sides. The triangle has an area of $\frac{5 \sqrt{15}}{2} \mathrm{~cm}^{2}$.

9a. Show that $\sin \theta=\frac{\sqrt{15}}{4}$.

9b. Find the two possible values for the length of the third side.

10. Solve the simultaneous equations
$\log _{2} 6 x=1+2 \log _{2} y$
$1+\log _{6} x=\log _{6}(15 y-25)$.
\qquad

A group of 7 adult men wanted to see if there was a relationship between their Body Mass Index (BMI) and their waist size. Their waist sizes, in centimetres, were recorded and their BMI calculated. The following table shows the results.

Waist $(x \mathbf{c m})$	58	63	75	82	93	98	105
BMI (y)	19	20	22	23	25	24	26

The relationship between x and y can be modelled by the regression equation $y=a x+b$.

11a. Write down the value of a and of b.
[3 marks]
\qquad

11b. Find the correlation coefficient.
\qquad

11c. Use the regression equation to estimate the BMI of an adult man whose [2 marks] waist size is 95 cm.
\qquad

An archaeological site is to be made accessible for viewing by the public. To do this, archaeologists built two straight paths from point A to point B and from point B to point C as shown in the following diagram. The length of path $A B$ is 185 m , the length of path $B C$ is 250 m , and angle $\mathrm{A} \hat{\mathrm{B}} \mathrm{C}$ is 125°.
diagram not to scale

12a. Find the distance from A to C.
[3 marks]
\qquad

The archaeologists plan to build two more straight paths, AD and DC. For the paths to go around the site, angle $\mathrm{B} \hat{\mathrm{A} D}$ is to be made equal to 85° and angle B CD is to be made equal to 70° as shown in the following diagram.

diagram not to scale

12b.
Find the size of angle $B \hat{A} \mathrm{C}$.
\qquad

12c.
Find the size of angle $\mathrm{C} \hat{\mathrm{A}} \mathrm{D}$.
\qquad

12d.
Find the size of angle $A \stackrel{\wedge}{\mathrm{C}} \mathrm{D}$.
\qquad

12e. The length of path $A D$ is 287 m .
Find the area of the region $A B C D$.
\qquad

13a. Find the roots of the equation $w^{3}=8 \mathrm{i}, w \in \mathbb{C}$. Give your answers in \quad [4 marks] Cartesian form.
\qquad

13b. One of the roots w_{1} satisfies the condition $\operatorname{Re}\left(w_{1}\right)=0$.
Given that $w_{1}=\frac{z}{z-\mathrm{i}}$, express z in the form $a+b \mathrm{i}$, where $a, b \in \mathbb{Q}$.
\qquad

