Analysis 12 HL Summer Review 2020 [110 marks]

The following diagram shows triangle ABC, with AB = 6 and AC = 8.

^{1a.} Given that $\cos \hat{A} = \frac{5}{6}$ find the value of $\sin \hat{A}$. [3 marks]

2a. Show that $\log_9\left(\cos 2x+2
ight)=\log_3\sqrt{\cos 2x+2}.$

[3 marks]

2b. Hence or otherwise solve $\log_3\left(2\sin x
ight) = \log_9\left(\cos 2x + 2
ight)$ for $0 < x < rac{\pi}{2}.$

[5 marks]

A large company surveyed 160 of its employees to find out how much time they spend traveling to work on a given day. The results of the survey are shown in the following cumulative frequency diagram.

3b.	Find the number of employees whose travelling time is within 15	[3 marks]
	minutes of the median.	

Only 10% of the employees spent more than k minutes traveling to work.

3c. Find the value of k.

[3 marks]

The results of the survey can also be displayed on the following box-and-whisker diagram.

3d. Write down the value of b.

[1 mark]

3e. Find the value of a.

[2 marks]

3f. Hence, find the interquartile range.

[2 marks]

3g. Travelling times of less than p minutes are considered outliers.

[2 marks]

Find the value of p.

In an arithmetic sequence, $u_2 = 5$ and $u_3 = 11$.

4a. Find the common difference.

[2 marks]

4b. Find the first term.

[2 marks]

4c. Find the sum of the first $20\ {\rm terms.}$

Let $g\left(x
ight)=x^{2}+bx+11$. The point $\left(-1,8
ight)$ lies on the graph of g.

5a. Find the value of b.

[2 marks]

[3 marks]

5b. The graph of $f(x) = x^2$ is transformed to obtain the graph of g.

Describe this transformation.

Consider
$$\begin{pmatrix} 11 \\ a \end{pmatrix} = \frac{11!}{a! \, 9!}.$$

[2 marks] 6a. Find the value of a.

6b. Hence or otherwise find the coefficient of the term in x^9 in the expansion [4 marks] of $\left(x+3\right)^{11}$.

The points A and B have position vectors
$$\begin{pmatrix} -2\\4\\-4 \end{pmatrix}$$
 and $\begin{pmatrix} 6\\8\\0 \end{pmatrix}$ respectively.
Point C has position vector $\begin{pmatrix} -1\\k\\0 \end{pmatrix}$. Let O be the origin.

Find, in terms of k,

7a. $\overrightarrow{OA} \bullet \overrightarrow{OC}$.

[2 marks]

^{7b.} $\overrightarrow{OB} \bullet \overrightarrow{OC}$.

[1 mark]

A line,
$$L_1$$
, has equation $r = \begin{pmatrix} -3 \\ 9 \\ 10 \end{pmatrix} + s \begin{pmatrix} 6 \\ 0 \\ 2 \end{pmatrix}$. Point $\mathrm{P}\left(15, \, 9, \, c\right)$ lies on L_1 .

8b. A second line, L_2 , is parallel to L_1 and passes through (1, 2, 3). [2 marks] Write down a vector equation for L_2 .

The lengths of two of the sides in a triangle are 4 cm and 5 cm. Let θ be the angle between the two given sides. The triangle has an area of $\frac{5\sqrt{15}}{2}$ cm².

9a. Show that
$$\sin \theta = \frac{\sqrt{15}}{4}$$
. [1 mark]

·····	

10. Solve the simultaneous equations

```
\mathrm{log}_2 6x = 1 + 2 \, \mathrm{log}_2 y
```

 $1 + \log_6 x = \log_6 (15y - 25).$

A group of 7 adult men wanted to see if there was a relationship between their Body Mass Index (BMI) and their waist size. Their waist sizes, in centimetres, were recorded and their BMI calculated. The following table shows the results.

Waist (x cm)	58	63	75	82	93	98	105
BMI (y)	19	20	22	23	25	24	26

The relationship between x and y can be modelled by the regression equation y = ax + b.

11a. Write down the value of a and of b.

[3 marks]

11b. Find the correlation coefficient.

[1 mark]

11c. Use the regression equation to estimate the BMI of an adult man whose [2 marks] waist size is 95 cm.

An archaeological site is to be made accessible for viewing by the public. To do this, archaeologists built two straight paths from point A to point B and from point B to point C as shown in the following diagram. The length of path AB is 185 m,

the length of path BC is 250 m, and angle $A\, \overset{_\frown}{B}\, C$ is 125°.

diagram not to scale

12a. Find the distance from A to C.

[3 marks]

The archaeologists plan to build two more straight paths, AD and DC. For the paths to go around the site, angle $B\stackrel{\wedge}{A}D$ is to be made equal to 85° and angle $B\stackrel{\wedge}{C}D$ is to be made equal to 70° as shown in the following diagram.

12b. Find the size of angle $B \stackrel{\wedge}{A} C.$

[3 marks]

12c. Find the size of angle $C \hat{A} D.$

[1 mark]

12d. Find the size of angle $A \hat{C} D.$

12e. The length of path AD is 287 m.

[4 marks]

Find the area of the region ABCD.

[2 marks]

13a. Find the roots of the equation $w^3 = 8i$, $w \in \mathbb{C}$. Give your answers in [4 marks] Cartesian form.

13b. One of the roots w_1 satisfies the condition $\operatorname{Re}\left(w_1
ight)=0.$ [3 marks]

Given that $w_1=rac{z}{z-\mathrm{i}}$, express z in the form $a+b\mathrm{i}$, where a, $b\in\mathbb{Q}.$

Printed for Carrollwood Day School